DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity.
نویسندگان
چکیده
Mammalian cells are protected from the effects of DNA double-strand breaks by end-joining repair. Cells lacking the Xrcc4 protein are hypersensitive to agents that induce DNA double-strand breaks, and are unable to complete V(D)J recombination. The residual repair of broken DNA ends in XRCC4-deficient cells requires short sequence homologies, thus possibly implicating Xrcc4 in end alignment. We show that Xrcc4 binds DNA, and prefers DNA with nicks or broken ends. Xrcc4 also binds to DNA ligase IV and enhances its joining activity. This stimulatory effect is shown to occur at the adenylation of the enzyme. DNA binding of Xrcc4 is correlated with its complementation of the V(D)J recombination defects in XRCC4-deficient cells, but is not required for stimulation of DNA ligase IV. Thus, the ability of Xrcc4 to bind to DNA suggests functions independent of DNA ligase IV.
منابع مشابه
DNA ligase IV binds to XRCC4 via a motif located between rather than within its BRCT domains
The covalent rejoining of DNA ends at single-stranded or double-stranded DNA breaks is catalyzed by DNA ligases. Four DNA ligase activities (I-IV) have been identified in mammalian cells [1]. It has recently been demonstrated that DNA ligase IV interacts with and is catalytically stimulated by the XRCC4 protein [2,3], which is essential for DNA double-strand break repair and the genomic rearran...
متن کاملCrystal structure of the Xrcc4 DNA repair protein and implications for end joining.
XRCC4 is essential for carrying out non-homologous DNA end joining (NHEJ) in all eukaryotes and, in particular, V(D)J recombination in vertebrates. Xrcc4 protein forms a complex with DNA ligase IV that rejoins two DNA ends in the last step of V(D)J recombination and NHEJ to repair double strand breaks. XRCC4-defective cells are extremely sensitive to ionizing radiation, and disruption of the XR...
متن کاملMammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV
BACKGROUND Mammalian cells deficient in the XRCC4 DNA repair protein are impaired in DNA double-strand break repair and are consequently hypersensitive to ionising radiation. These cells are also defective in site-specific V(D)J recombination, a process that generates the diversity of antigen receptor genes in the developing immune system. These features are shared by cells lacking components o...
متن کاملCernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends.
Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks created by ionizing radiation or V(D)J recombination of the immunoglobulin genes. The breaks often leave mismatched or nonligatable ends, and NHEJ must repair the breaks with high efficiency and minimal nucleotide loss. Here, the NHEJ proteins Ku, DNA-dependent protein kinase catalytic subunit, XRCC4/Ligase IV, and Cernunnos/XRCC...
متن کاملDefective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice.
Mammalian nonhomologous DNA end joining employs Ku70, Ku80, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4, and DNA ligase IV (Lig4). Herein, we show that Ku70 and Ku80 deficiency but not DNA-PKcs deficiency results in dramatically increased death of developing embryonic neurons in mice. The Ku-deficient phenotype is qualitatively similar to, but less severe than, that associa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 18 7 شماره
صفحات -
تاریخ انتشار 1999